Limited OXPHOS capacity in white adipocytes is a hallmark of obesity in laboratory mice irrespective of the glucose tolerance status

نویسندگان

  • Theresa Schöttl
  • Lisa Kappler
  • Tobias Fromme
  • Martin Klingenspor
چکیده

OBJECTIVE Several human and rodent obesity studies speculate on a causal link between altered white adipocyte mitochondria in the obese state and changes in glucose homeostasis. We here aimed to dissect whether alterations in white adipocyte mitochondrial respiratory function are a specific phenomenon of obesity or impaired glucose tolerance or both. METHODS Mature white adipocytes were purified from posterior subcutaneous and intraabdominal epididymal fat of four murine obesity models characterized by either impaired or normal oral glucose tolerance. Bioenergetic profiles, including basal, leak, and maximal respiration, were generated using high-resolution respirometry. Cell respiratory control ratios were calculated to evaluate mitochondrial respiratory function. RESULTS Maximal respiration capacity and cell respiratory control ratios were diminished in white adipocytes of each of the four murine obesity models, both in the absence and the presence of impaired glucose tolerance. Limitation was more pronounced in adipocytes of intraabdominal versus subcutaneous fat. CONCLUSION Reduced mitochondrial respiratory capacity in white adipocytes is a hallmark of murine obesity irrespective of the glucose tolerance status. Impaired respiratory capacity in white adipocytes solely is not sufficient for the development of systemic glucose intolerance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced polyamine catabolism alters homeostatic control of white adipose tissue mass, energy expenditure, and glucose metabolism.

Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 alpha) is an attractive candidate gene for type 2 diabetes, as genes of the oxidative phosphorylation (OXPHOS) pathway are coordinatively downregulated by reduced expression of PGC-1 alpha in skeletal muscle and adipose tissue of patients with type 2 diabetes. Here we demonstrate that transgenic mice with activated poly...

متن کامل

Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice.

The white adipose organ is composed of both subcutaneous and several intra-abdominal depots. Excess abdominal adiposity is a major risk factor for metabolic disease in rodents and humans, while expansion of subcutaneous fat does not carry the same risks. Brown adipose produces heat as a defense against hypothermia and obesity, and the appearance of brown-like adipocytes within white adipose tis...

متن کامل

Adipocyte lipid synthesis coupled to neuronal control of thermogenic programming

BACKGROUND The de novo biosynthesis of fatty acids (DNL) through fatty acid synthase (FASN) in adipocytes is exquisitely regulated by nutrients, hormones, fasting, and obesity in mice and humans. However, the functions of DNL in adipocyte biology and in the regulation of systemic glucose homeostasis are not fully understood. METHODS & RESULTS Here we show adipocyte DNL controls crosstalk to l...

متن کامل

All-trans retinoic acid induces oxidative phosphorylation and mitochondria biogenesis in adipocytes.

A positive effect of all-trans retinoic acid (ATRA) on white adipose tissue (WAT) oxidative and thermogenic capacity has been described and linked to an in vivo fat-lowering effect of ATRA in mice. However, little is known about the effects of ATRA on mitochondria in white fat. Our objective has been to characterize the effect of ATRA on mitochondria biogenesis and oxidative phosphorylation (OX...

متن کامل

Kinin B1 Receptor in Adipocytes Regulates Glucose Tolerance and Predisposition to Obesity

BACKGROUND Kinins participate in the pathophysiology of obesity and type 2 diabetes by mechanisms which are not fully understood. Kinin B(1) receptor knockout mice (B(1) (-/-)) are leaner and exhibit improved insulin sensitivity. METHODOLOGY/PRINCIPAL FINDINGS Here we show that kinin B(1) receptors in adipocytes play a role in controlling whole body insulin action and glucose homeostasis. Adi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015